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Abstract. We have calculated the real part χ′ of the nonlinear dielectric susceptibility of amorphous
insulators in the kHz range, by using the two-level system model and a nonperturbative numerical quantum
approach. At low temperature T , it is first shown that the standard two-level model should lead to a decrease
of χ′ when the measuring field E is raised, since raising E increases the population of the upper level and
induces Rabi oscillations cancelling the ones induced from the ground level. This predicted E-induced
decrease of χ′ is at odds with experiments. However, a better, though still not perfect, agreement with
low-frequency experimental nonlinear data is recovered if, in our fully quantum simulations, interactions
between defects are taken into account by a new relaxation rate whose efficiency increases as

√
E, as

was proposed recently by Burin et al. [Phys. Rev. Lett. 86, 5616 (2001)]. In this approach, the behavior
of χ′ at low T is mainly explained by the efficiency of this new relaxation channel. Since a quantitative
understanding of glasses is still missing, we finally discuss experiments whose results should yield a refined
understanding of this new relaxation mechanism: i) a completely new nonlinear behavior should be found
for samples whose thickness is � 10 nm; ii) a decrease of nonequilibrium effects should be found when E
is increased.

PACS. 61.43.Fs Glasses – 77.22.Ch Permittivity (dielectric function) – 72.20.Ht High-field and nonlinear
effects

Amorphous materials exhibit universal anomalous prop-
erties at low temperature. In 1971, Zeller and Pohl [1] dis-
covered below 1 K a quasilinear behavior of the specific
heat in a number of glasses contrasting with the Debye
law of crystalline materials. Anderson, Halperin, Varma [2]
and Phillips [3] proposed an explanation based upon the
existence of localized two-level systems (TLS). Their ori-
gin may be due to the tunneling of atoms or groups of
atoms between two equilibrium positions separated by a
narrow energy barrier featuring asymmetric two-well po-
tentials. They are assumed randomly distributed in en-
ergy splittings and tunneling barriers as a consequence of
the structural disorder of these materials. This model has
proven to be successful to understand most salient exper-
imental features.

The standard TLS model assumes defects do not inter-
act with one another. However, defects are strongly cou-
pled to their environment and can emit or absorb phonons.
It leads to an indirect interaction between nearest neigh-
bors via the phonon field [4]. Certain recent failures to
explain nonequilibrium data (at a few kHz) [5] underscore
the likely involvement of these interactions below 100 mK.
However, these nonequilibrium effects are small correc-
tions of the kHz stationary response, and, up to recently,
examples of stationary susceptibilities strongly affected by
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interactions were very rare: in the kHz regime, it was ar-
gued that the ultra-low-T (T ≤ Tplat � 1 mK) plateau
of the dielectric constant in the linear regime, strongly
different from the expected logarithmic increase, resulted
from interactions [6]. Very recently, such a conclusion was
drawn from internal friction experiments [7].

In this work, we show that including interactions in
the TLS model with a recently proposed mechanism [8]
strongly affects the nonlinear stationary dielectric suscep-
tibility χ′ of amorphous insulators at a few kHz. A very
complete set of such data was published a few years ago
by Rogge et al. [9], twenty years after the pioneering work
of Frossati et al. [10]. In the linear regime, χ′ decreases
when T decreases, reaches its minimum at Trev and then
increases below Trev (before reaching the above-mentioned
ultra-low-T plateau χ′

plat for T ≤ Tplat). According to the
standard TLS model, the χ′ decrease above Trev is due to
the progressive freezing of the diagonal (or relaxational)
part of the response, while the χ′ increase below Trev

comes from the induced off-diagonal (or resonant) part of
the susceptibility: this effect enlarges as T decreases as do
all quantum effects. However, due to the quantum nature
of χ′ below Trev, one expects χ′ to be strongly depressed
by a strong measuring electric field E at a given T . This
can be guessed from the quantum saturation phenomenon
which is very general in two level systems [28]. Indeed,
increasing E decreases the population difference between
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the two energy levels: as the Rabi oscillations produced by
E on the upper level are in phase opposition with respect
to the ones produced on the ground level, the quantum re-
sponse, once averaged on many independent TLS’s, tends
to zero when E is increased. Strikingly, Rogge et al. ex-
periments show the opposite trend: χ′(T < Trev) increases
when E is increased.

As it is carefully explained in reference [9], the main
part of this behavior does not result from heating of the
sample by E. To give a supplementary argument with re-
spect to reference [9], let us note that if Elin is the upper
field below which the dielectric susceptibility is measured
as being field independent, one expects that the heating of
the sample, for a given E � Elin, is more important when
T decreases. A heating effect is thus expected to stretch
the χ′(T ) curve of an amount increasing as T decreases,
i.e. one expects∣∣∣∣∂χ′

∂T

∣∣∣∣
E�Elin

<

∣∣∣∣∂χ′

∂T

∣∣∣∣
E≤Elin

, (1)

to hold at low T , i.e. mainly at T ≤ Trev.. As can be
seen, e.g. in Figure 3 of reference [9], the trend of the
data is exactly the opposite of equation (1). At extremely
low T , excluding totally heating effects is less obvious: as
stated in reference [9], the E-induced increase of Tplat,
for the “strong fields” E ≥ 10 × Elin, might be due to
heating; but in the same time, heating cannot account
for the E-induced increase of χ′

plat observed for “mod-
erate fields” E ≤ 10 × Elin since the associated Tplat

does not depend on E (see the first argument given be-
low Figure 5 of reference [9]). We concentrate here on the
onset of the nonlinear effects, i.e. on “moderate fields”
E � 10 × Elin � 15 kV/m for reasons detailed in Ap-
pendix B: in this range, heating effects can be ruled out
and the fact that, below Trev, χ′(E � Elin) does not
behave as expected from the quantum saturation phe-
nomenon seems extremely intriguing in the framework of
the standard TLS model.

However, this was not pointed out since the non linear
effects in the TLS model were, up to now, only calculated
by using the adiabatic approximation [11] which predicts
an increase of χ′ with E, i.e. qualitatively accounts for the
experimental behavior. However, such an approximation
disregards any coherence effects, i.e. it purely suppresses
the off diagonal relaxation time τ2, while this time scale
is a well known quantity, measured in the so-called “echo
experiments” (see below). Moreover, in the specific case of
the real part of the susceptibility, the consistency of the
adiabatic approximation is questionable [12]. Indeed, as
it is very clearly stated in reference [11], this approxima-
tion does not hold for TLS’s whose tunneling energy ∆0 is
too small, and yet it finds that the nonlinear part of χ′ is
dominated by the smallest ∆0 values (see after Eq. (3.30)
in Ref. [11]). More precisely [11], with p0 � 1 D the TLS
dipole, even for the lowest electric fields E � 1 kV/m of
frequency ω � 1 kHz, the adiabatic approximation fails
when ∆0 �

√
�ωp0E � 3 µK, while it is well known,

from instationarity experiments (such as the ones anal-
ysed, e.g., in Ref. [5]), that smaller Tunneling energies

exist in glasses. Besides, the third puzzling point is that,
according to the authors themselves [11], the reason of
the increase of χ′ with E in the adiabatic approximation
is physically obscure, which leaves unsolved the question
of the expected “quantum saturation effect” above men-
tioned. Finally, several predictions of reference [11] are
somehow contradicted by experiments [9]: instead of the
predicted Trev ∝ Eγ with γ > 1, the measured data yield
γ � 1/2; below Trev, at a given E, the predicted peaked
behavior of ∂χ′/∂T is not observed; at very low T , the ob-
served E dependence of χ′

plat contradicts the predictions.
This work goes beyond the adiabatic approximation,

even though, due to the few simplifying assumptions that
we have made (see Eq. (2)), we do not intend to yield a
fully “from first principle calculation”. The key point is
that phase coherence is not discarded here since non lin-
ear effects are treated by a fully quantum non perturba-
tive method. In the first part, we show that the standard
TLS model cannot explain the low-frequency experimental
data below 100 mK since it yields, at low T , the above-
mentioned quantum saturation phenomenon. In a second
part, interactions between defects are added by using an
interaction mechanism proposed very recently by Burin
et al. [8], and a better, though still not perfect, agreement
is obtained with experiments. Finally, we briefly discuss
experimental predictions implied by Burin et al.’s inter-
action mechanism. These experiments should help to re-
fine our understanding of Burin et al.’s mechanism, which
should help to get the, still lacking, quantitative theory of
glasses.

1 Standard two-level system model

1.1 Bloch equations of TLS

1.1.1 Dynamics of a unique isolated TLS

Consider a TLS that is sitting in a double-well potential
and assume this defect has a dipole moment p0. Its energy
splitting ε is related [15] to the asymmetry energy ∆ and
to the tunneling matrix element ∆0, describing transitions
between the wells, by ε =

√
∆2 + ∆2

0. Due to finite ∆0,
the eigen states extend over both sides of the TLS, and the
position operator r is no longer diagonal in this eigen basis.
As a result, when an external electric field E is applied
to p0, the coupling Hamiltonian qE · r is not diagonal in
the eigen basis [5] (upon which all the operators of this
work are expressed), yielding a total Hamiltonian:

H =
1
2

(
ε 0

0 −ε

)
+

(
∆
ε

∆0
ε

∆0
ε −∆

ε

)
p0 · E cosωt,

or H = −s · Ω, with s = �

2Σ where Σ are the three
Pauli matrices and Ω is an external effective field (Ω com-
ponents are given below, note Ωy = 0), which shows an
effective spin operator s is associated to the TLS. The sys-
tematic use of “spin” language comes from the fact that



J. Le Cochec and F. Ladieu: Onset of the nonlinear dielectric response of glasses in the two-level system model 15

the three Pauli matrices, combined with the identity ma-
trix, form a general basis for TLS’s. Whatever its physical
nature, any operator can be expressed as a linear combi-
nation of these four matrices, e.g., the density operator ρ
can be written: ρ = (1/2)I + (1/�)S.Σ, where S is the
quantum mean value of the spin operator s. This shows
that Sx and Sy describe the coherence effects contained in
the off-diagonal terms of ρ, while Sz is proportional to the
population difference between the levels (the occupation
probabilities are given by the diagonal terms of ρ).

The movement of p0 and thereafter the dielectric re-
sponse of the material stem from the dynamics of S. For a
perfectly isolated TLS (note that this implies that T = 0)
the evolution of S in the external field Ω is only a preces-
sion around the external field Ω, as can be seen from the
Schrödinger equation which leads [5] to ∂S/∂t = S× Ω.

1.1.2 Dynamics of an ensemble of non-isolated TLS’s

At finite T , the dynamics of the TLS must include the
relaxation toward its equilibrium value since each TLS in-
teracts with its environment (phonons or neighboring de-
fects). Since these interactions occur randomly for a given
TLS, the dynamical equation must deal with ensemble
averaged properties S̄, i.e. with quantities averaged over
many similar TLS’s. This evolution is given by the Bloch
equations, namely

∂S̄
∂t

= S̄× Ω +
S̄ − 〈S̄〉relax

τrelax
, (2)

where the last term states that the relaxation of S̄ to-
ward the environment equilibrium values 〈S̄〉relax must
be added to the quantum dynamics (see Appendix A).
In equation (2) it is assumed that the relaxation of a
given S̄ component, say S̄x, occurs with a well defined
time constant, say τx. In the important case of short time
scales, one needs to go beyond this approximation since
echo signals do not generally decay as a simple exponen-
tial ([13,14]). This subtle effect is irrelevant here since, as
already stated e.g. in reference [5], we are only interested
in the long time range solution of equation (2), namely
χ′(1 kHz), i.e. we focus on the particular case ωτ2 � 1
(see below). Similarly the relaxation term of equation (2)
might become more complicated in the case of very strong
fields [40], leading, e.g., to a S̄y/τx,y term in the relaxation
of S̄x (see Appendix B). However this should not be the
case here since we only focus on the onset of the non lin-
ear regime (p0E will not much exceed kBT ). As a result,
the relaxation terms can be derived quite simply, as we
show now.

i) Phonon induced relaxation

Let us first focus on phonon field relaxation. The occupa-
tion probabilities are altered by the emission or the ab-
sorption of phonons, yielding [15] a relaxation of S̄z, with
the relaxation time τ1 = κ1/(ε∆2

0) tanh ε
2kBT , where κ1 is

a sample-dependent constant. Since phonon processes oc-
cur randomly and independently for various TLS’s, they
break the phase coherence of the ensemble of (nonin-
teracting) TLS’s, yielding a relaxation time 2τ1 for S̄x

and S̄y. What are the thermodynamic values 〈S̄x,y,z〉 to
which S̄x,y,z relax? By second order expansion of dynami-
cal correlation functions, it was shown [16] that this relax-
ation occurs towards the so-called “instantaneous equilib-
rium values”, namely, 〈S̄x,y,z(t)〉 = Tr(〈ρ (t)〉S̄x,y,z) where
〈ρ(t)〉 = exp(−H(t)/(kBT ))/Tr(exp(−H(t)/(kBT )) is the
“instantaneous” thermodynamical density operator and
kB is Boltzmann’s constant. For this result to be valid, sev-
eral conditions must be fullfilled, among which the most
stringent one is, by far: |p0 ·E| τc ≤ � where τc is the
correlation time of the random electrical field acting on a
given TLS due to its small interactions with its neighbors
(see next paragraph ii)). Finally, these phonon processes
yield in the Bloch equations a term (S̄z(t)−〈S̄z(t)〉)/τ1 for
the population relaxation, and (S̄x,y(t) − 〈S̄x,y(t)〉)/(2τ1)
for the relaxation of the coherence terms. In these terms,
τ1 does not depend on time, for reasons explained in ref-
erence [17].

With the above relations, we get for the diagonal ele-
ments 〈ρ1,1(t)〉 and 〈ρ2,2(t)〉:

〈ρ1,1 (t)〉 =
1
2

+
Ωz

2
√

Ω2
x + Ω2

z

tanh
�
√

Ω2
x + Ω2

z

2kBT
,

and

〈ρ2,2 (t)〉 =
1
2
− Ωz

2
√

Ω2
x + Ω2

z

tanh
�
√

Ω2
x + Ω2

z

2kBT
·

For its off-diagonal elements, it is found:

〈ρ1,2 (t)〉 = 〈ρ2,1 (t)〉 =
Ωx

2
√

Ω2
x + Ω2

z

tanh
�
√

Ω2
x + Ω2

z

2kBT
,

where

Ωx (t) = −2
∆0

ε

p0 ·E
�

cosωt,

Ωz (t) = − ε

�
− 2

∆

ε

p0 · E
�

cosωt.

Finally, one finds for the phonon field contribution:

〈S̄x〉 =
�Ωx

2
√

Ω2
x + Ω2

z

tanh
�
√

Ω2
x + Ω2

z

2kBT
,

〈S̄z〉 =
�Ωz

2
√

Ω2
x + Ω2

z

tanh
�
√

Ω2
x + Ω2

z

2kBT
,

and 〈S̄y〉 = 0.

ii) “Spin-spin” induced relaxation

Let us now turn to “spin-spin” interactions: for a given
TLS, the effects of thermal transitions of its neighboring
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TLS’s can be modeled as a small (fluctuating in time) elec-
tric field, i.e., as small fluctuating terms δH(t) � ε, kBT .
The latter inequality ensures that the relaxation of the
population of the levels (involving S̄z) will not be sensi-
tive to δH(t). It is shown in the Appendix A that, for a
given TLS, the oscillations of Sx,y(t) are no longer regular
but progressively deformed by the random δH(t) terms:
due to the absence of correlations between the δH(t) val-
ues seen by various TLS’s, ensemble averaging leads, by
cancellation of phases of many TLS’s [22], to a relaxation
of S̄x,y to zero (while Sx,y remains finite for any given
TLS). In other words, spin-spin interactions act as a “spin
bath” (different from the phonon bath) whose net effect
is to cancel the “off diagonal” terms over a short char-
acteristic time scale τ2, yielding a supplementary S̄x,y/τ2

for the relaxation of the coherence terms. These S̄x,y/τ2

terms are the main physical difference between this work
and the above mentioned “adiabatic approximation” [11].
Indeed, as shown in the Appendix A, in the “time de-
pendent diagonal basis” considered in reference [11], the
small fluctuating δH(t) can be perfectly “absorbed” by a
redefinition of ∆, but since the new ∆(t) = ∆ + δ∆(t)
is extremely close to the former ∆, the TLS-TLS inter-
actions disappear, as well as τ2, in the framework of the
adiabatic approximation.

In echo experiments, performed on various glasses, τ2

is typically in the 10−100 µs range for T = 15 mK. As
a result, for ω in the kHz range, this yields τ2ω � 1:
this will allow a decisive simplification of the problem (see
Sect. 1.1.3). Despite τ2 is always found to lie in the same
range, its temperature dependence is not clear at present:
in echo experiments [29,30], both τ2 ∝ T−1 as well as τ2 ∝
T−2 were reported [31]. This might come both from the
fact that accounting for the detailed shape of echo signals
requires a very subtle theory (see e.g. [13]) and from the
fact that several mechanisms contributes to τ2. Indeed, the
pioneering work [23] of Black et al. predicted a τ2 ∝ T−2

dependence but very recent calculations [24] based upon
the mechanism used in Section 2 found that τ2 ∝ T−1

could be justified at low T . Since this new mechanism will
be used in the last section, we use throughout this work
τ2 = κ2/T , where κ2 is a sample dependent constant. In
order to try to take into account the various mechanisms
which might contributes to τ2, the parameter κ2 will be
widely varied, as can be seen in Figure 2. Last, owing to
the smallness of the p0E values considered here, we neglect
any E effect on τ2 as explained in Appendix B.

iii) Final form of the Bloch equations

Inserting the above relaxation terms in equation (2), the
three Bloch equations can be written as follows:

dS̄x

dt
− Ωz (t) S̄y +

S̄x − 〈S̄x〉
2τ1

+
S̄x

τ2
= 0, (3a)

dS̄y

dt
− Ωx (t) S̄z + Ωz (t) S̄x +

S̄y

2τ1
+

S̄y

τ2
= 0, (3b)

dS̄z

dt
+ Ωx (t) S̄y +

S̄z − 〈S̄z〉
τ1

= 0, (3c)

where all the S̄/τ terms come from the relaxation pro-
cesses, while all the ΩS̄ terms arise from the quantum dy-
namics, i.e. from the fact that H and s do not commute.

Equations (3a, 3b) also write

dS̄+

dt
+ iΩz (t) S̄+ +

S̄+

τ∗
2

= iΩx (t) S̄z +
〈S̄x〉
2τ1

, (4)

with

S̄+ = S̄x + iS̄y,

and τ∗
2 = 2τ1τ2

2τ1+τ2
.

Let us note that τ∗
2 appears due to the existence in

equations (3a–3b) of the two terms S̄x,y/(2τ1). Even if
they are required by consistency (see above and Ref. [25]),
these two terms do not exist in the pioneering works ac-
counting either for the small instationarities [5] or for
echo experiments [29–31]. In fact these two terms play
a negligible role in the nonlinear susceptibility. To show
this, let us first note that as long as τ1 > τ2, one gets
τ∗
2 � τ2, i.e. the equations (3a–3c) amount to the simpler

Bloch equations used before (especially in pulse echo ex-
periments). The key point is that, in the (∆, ∆0) plane,
this domain where τ1 > τ2 is quite large: with τ2 = κ2/T
and τ1 = κ1/(ε∆2

0) tanh ε
2kBT , it is shown in the inset of

Figure 1 and in reference [26] that this domain contains,
at least, all the TLS’s such that ε ≤ e1,2 = (κ1T/κ2)1/3.
As shown in the inset of Figure 1, e1,2 � 0.2 K is much
larger than the p0E values studied in this work. This indi-
cates that the TLS’s standing out of the τ1 > τ2 domain
should not be affected by E, i.e. they should be in the lin-
ear regime (see Ref. [27]). To summarize, nonlinear effects
should come mainly from the τ1 > τ2 region where the two
terms S̄x,y/(2τ1) are negligible. This will be analytically
demonstrated in Section 1.2.2.

1.1.3 Non perturbative resolution of the Bloch equations

The Bloch equations cannot be solved analytically and
even their numerical resolution is so far a great challenge.
However, in the audio-frequency range, some approxima-
tions can be made which strongly simplify the calcula-
tions. As τ∗

2 is much shorter than the typical time (∼ 0.1
ω )

to modify the populations, S̄z may be considered con-
stant [28] in the right hand-side of equation (4). The co-
herence terms follow “continuously” the population evo-
lution. They reach at every moment the stationary state
corresponding to the “frozen” occupation numbers. Once
again we underline that this method is completely differ-
ent from the adiabatic assumption of reference [11] since,
here, τ2 is not discarded.

Therefore, equation (4) can be solved independently of
equation (3c). The stationary solution of equation (4) is

S̄+ =
iΩxS̄z + 〈S̄x〉/2τ1

iΩz + 1/τ∗
2

, (5)
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which inserted into equation (3c) leads to a differential
equation for S̄z:

dS̄z

dt
+

Ω2
x/τ∗

2

Ω2
x + 1/τ∗

2
2 S̄z +

S̄z − 〈S̄z〉
τ1

=
ΩxΩz

Ω2
x + 1/τ∗

2
2

〈S̄x〉
2τ1

,

(6)

S̄z(t) in equation (6) is expanded into its Fourier series to
get its stationary state. The expansion is limited to a finite
number of harmonics. This number, of the order of 10, is
found a posteriori when a stable and accurate result is
obtained. So the differential equation is equivalent to a
linear system whose solutions are the harmonics S̄n

z . The
inverse Fourier-transform gives the periodic evolution of
S̄z(t). The coherence terms S̄x and S̄y are deduced from
equation (5) where S̄z(t), the solution of equation (6), is
inserted. Finally, the first harmonics S̄1

x of S̄x(t) is sought,
to be included into the dielectric susceptibility (see Eq. (7)
below).

Indeed, the susceptibility [5] of a single TLS reads

χ̄ =
−2 |p0|
|E| cos θ

(
∆

ε

S̄1
z

�
+

∆0

ε

S̄1
x

�

)
, (7)

and it must be averaged over the distribution of TLS’s [5]
and over the dipole-orientation angle θ to yield the total
susceptibility of the sample:

χ = P

∫ ∆max

0

d∆

∫ ∆0max

∆0min

d∆0

∆0

∫ 1

−1

d (cos θ) χ̄ (∆, ∆0, θ) .

(8)

In the remainder of this article, we concentrate on the
real part χ′ of χ which is linked to the capacitance of the
sample, i.e., to its dielectric constant εr by:

εr − 1 =
χ′

ε0
·

1.2 The quantum saturation effect: the quantum part
of χ′(T) is depressed by a E increase

1.2.1 Numerical results

We have used the standard values for amorphous-SiO2:
p0 = 1 D, P = 3× 1044 Jm−3, κ1 = 10−8 s K3 (all the en-
ergies in τ1 taken in K), ∆0min = 10−6 K, ∆0max = 10 K,
∆max = 10 K. As explained above, we took τ2 = κ2/T ,
where κ2 was ranged from 3 × 10−11 s K to 10−7 sK, al-
lowing to check our fundamental assumption ωτ2 � 1 pro-
vided T ≥ 0.5 mK. Last, the numerical relative accuracy
of our simulations was, in any case, better than 10−3: this
was checked very carefully, both by increasing the number
of harmonics when solving equation (6) and by letting the
successive integration procedures converge to better than
10−4. For each set of parameters E, T, κ1, κ2, ∆0,min at
least 4 × 104 couples of (∆, ∆0) were computed.

The simulations are displayed in Figure 1. The res-
onant response (low temperature) is strongly depressed
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Fig. 1. Inset: At T = 10 mK, κ1 = 10−8 sK3, and κ2 =
10−8 sK, the domain of TLS’s such that τ2 < τ1 is quite large
and contains all the gaps smaller than e1,2 = (κ1T/κ2)

1/3 –
see [26]. Even at p0E = 5.12 mK this domain is larger than
the one of the TLS’s driven in the nonlinear regime defined by
ε ≤ εonset � 70 mK (see Eq. (11c)). Note that εonset � p0E
(p0E is the small black area very near the origin): this explains
that the nonlinear effects are visible even at very low fields, as
shown in the main figure. Main figure: Dielectric susceptibil-
ity of amorphous-SiO2 at 1 kHz vs. temperature simulated at
various fields – the value of p0E in kelvin labels each curve –
within the standard two-level system model with the following
set of parameters: p0 = 1 D, κ1 = 10−8 s K3, κ2 = 10−9 sK,
∆0,min = 10−6 K, ∆max = ∆0max = 10 K, P = 3×1044 Jm−3.
The low-temperature response vanishes rapidly as the electric
field is increased due to the quantum saturation phenomenon.
The linear response was obtained by an independent pertur-
bative method.

by the drive level, while the relaxation contribution (high
temperature) is little affected. This is at odds with the
experiments [9] where increasing E leads to an increase
of both the resonant response and of its slope |∂ε′r/∂T |
below Trev. Let us note that the curve labeled “linear re-
sponse” was obtained independently by a standard series
expansion of the Bloch equations keeping only, as in ref-
erence [5], the terms proportional to E: as E is made very
small, the nonlinear calculations very precisely converge
towards the linear regime.

However, the extreme sensitiveness of the resonance to
the external field is very striking. It decreases rapidly while
|p0 ·E| � kBT . The low-temperature phase-coherent up-
turn is destroyed by its environment (the external field),
although the perturbation is much smaller than any ther-
modynamical quantity, which suggests that this effect has
a quantum origin. This is further confirmed by the in-
set of Figure 2 showing the influence of T and τ2 on
δχ′(E, T ) = 1 − χ′(E, T )/χ′(0, T ): for a given E, the
smaller T , the larger δχ′, which is expected since quantum
effects generally increase as T decreases. Similarly, δχ′ is
larger when κ2 is made smaller, i.e., when quantum co-
herence is made more “fragile”. Finally, the dimensionless
δχ′ appears to depend not only on E, T, κ2 but also on κ1,
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Fig. 2. Inset: δχ′ = 1 − χ′(E, T )/χ′(0, T ) plotted versus p0E
(in kelvin). Curve A corresponds to p0 = 1 D, κ1 = 10−8 sK3,
κ2 = 10−9 sK, ∆0,min = 10−6 K, ∆max = ∆0max = 10 K,
P = 3 × 1044 J m−3 and T = 2 mK. The other three curves
show the effect upon quantum saturation of the parameter
which was changed with respect to A: increasing T , as well
as decreasing κ1, decreases δχ′; while decreasing κ2 increases
δχ′, as expected due to the quantum nature of δχ′. Main fig-
ure: The various influences of the simulation parameters can
be reduced to a universal function of the dimensionless variable
η = p0E

kBT
( κ1

T2κ2
)α with α = 0.45±0.05 numerically. The dashed

line shows that δχ′ ∝ √
η when η � 1. The various parameters

were ranged over several decades: 10−10 sK3 ≤ κ1 ≤ 10−8 sK3;
3 × 10−11 sK ≤ κ2 ≤ 10−7 sK; 10−6 K ≤ ∆0,min ≤ 10−4 K;
10−8 K ≤ p0E ≤ 3 mK. The data of this figure correspond to
the particular case θ = 0.

and it is shown in the main part of Figure 2 that all these
dependencies are a universal function of a dimensionless
scale η, namely:

δχ′ =

{
0.1 ×√

η if η � 1

0.1 × ln(η) if η 
 1
with η =

p0E

kBT

(
κ1

T 2κ2

)α

,

(9)

where α � 0.45 ± 0.05 and ln(η) might be replaced by
a power law of η with an exponent lower than 0.1. This
universal δχ′(η) dependence holds only when the relax-
ational part of χ′ can be totally neglected, i.e., well below
Trev � 50 mK: in Figure 2, only data corresponding to
T ≤ 10 mK have been plotted. For these low T , δχ′(η)
remains universal even when (κ1, κ2, E) are varied over
several decades. The factor κ1/(T 2κ2) in η becomes very
large at low T , yielding nonlinear effects even for very
small E: this expresses that the lower T , the smaller the
onset field of the nonlinear regime, as already seen in Fig-
ure 1. Let us mention that the data of Figure 2 correspond
to the particular case θ = 0.

1.2.2 Physical interpretation

To further understand the universal δχ′(η) and demon-
strate its quantum origin, let us briefly go into the
structure of the Bloch equations. By using the identity

Ωx〈S̄z〉 = Ωz〈S̄x〉, equation (6) can be written:

dS̄z

dt
+

S̄z

τz
=

〈S̄z〉
τz,1

,




1
τz,1

= 1
τ1

(
1 + 1

2
(Ωxτ∗

2 )2

1+(Ωzτ∗
2 )2

)
1
τz

= 1
τ1

(
1 + τ1

τ∗
2

(Ωxτ∗
2 )2

1+(Ωzτ∗
2 )2

)
.

(10)

In equation (10), one gets at E → 0: τz = τz,1 = τ1.
As argued in Section 1.1.2, the nonlinear behavior should
come from the TLS’s such that τ1 > τ2: in this case we
see indeed from equation (10) that increasing E decreases
τz much more than τz,1. This strongly depresses the off
diagonal susceptibility, as we shall see, just after having
derived the kind of TLS’s which are driven in the nonlinear
regime by a given E.

a. εonset derivation

Let us first derive, from equation (10), the critical value
E∗ such that 1/τz becomes larger than 1/τz,1: focusing on
the gaps ε lying within the τ1 > τ2 domain, i.e. in the
domain where τ∗

2 � τ2, E∗ is determined by the condition
τ1τ2Ω2

x � 1 + Ω2
zτ

2
2 , yielding:



p0E
∗

ε
=

�T

kB
√

κ1κ2
if kBετ2 ≤ � (11a)

p0E
∗

ε
= ε

√
κ2

κ1
if kBετ2 ≥ � , (11b)

where all the energies are expressed in kelvins. With the
standard values κ1 = 10−8 s K3 and κ2 = 10−9 s K, we see
that p0E

∗ is much smaller than ε. Indeed, for T = 10 mK
we get p0E

∗/ε = 2 × 10−5 for the smallest gaps following
equation (11a), and, for example, p0E

∗/ε ≤ 3 × 10−3 for
the gaps ε � kBT which follow equation (11b). Solving
equation (11b) with respect to ε, for a given E, leads to a
characteristic gap

εonset =
√

p0E

(
κ1

κ2

)1/4

, (11c)

where all the energies are in Kelvins. For the highest
p0E � 5.12 mK studied here, we get εonset � 70 mK. As
shown in the inset of Figure 1, εonset is both much larger
than p0E and corresponds to a domain smaller than the
one defined by our assumption τ1 > τ2.

b. E induced off diagonal response depression

To show that E∗ in equation (11b) is indeed the critical
field for a given TLS, at which the kind of nonlinearities
of Figures 1–2 onsets, let us now compare χ′(E � E∗)
and χ′(E∗).

i) If E � E∗, we get from equation (10) τz � τz,1 � τ1.
Solving equation (10) is straightforward and leads for the
nth harmonics of S̄z(t):

S̄n
z =

〈S̄n
z 〉

1 + n2ω2τ2
1

, (12)
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where 〈S̄n
z 〉 is the nth harmonics of 〈S̄z(t)〉. Remembering

that the region of interest is ε < εonset, it can be checked
that ωτ1 
 1 for basically all the considered TLS’s. This
yields, from equation (12), S̄z(t) � 〈S̄0

z 〉. Furthermore,
since p0E � ε due to equations (11), we get 〈S̄z(t)〉 �
〈S̄0

z 〉, which, once combined with the identity Ωx〈S̄z(t)〉 =
Ωz〈S̄x(t)〉, yields S̄z(t) � Ωz〈S̄x(t)〉/Ωx. Once reported
into equation (5), this yields:

S̄x(t) � 〈S̄x(t)〉
1 + Ω2

zτ
2
2

(Ω2
zτ

2
2 ), (13)

where in the last factor the fact that Ω2
zτ

2
2 
 τ2/(2τ1),

which holds for any reasonable set of (κ1, κ2), was used to
drop the term τ2/(2τ1).

ii) For E = E∗, we get from equation (10), τz,1 � τ1

and τ1/2 ≤ τz(t) ≤ τ1. The fact that τz is now smaller
than τz,1 is responsible for the onset of nonlinear effects.
This can be seen by setting τz = τ1/2 throughout the
electrical period. With this simplification, one gets, with
a derivation similar to the one yielding equation (13):

S̄x(t) �
〈
S̄x(t)

〉
1 + Ω2

zτ
2
2

(
1
2
Ω2

zτ
2
2

)
. (14)

The off-diagonal part of the response in phase with E is
χ̄′

x ∝ S̄1
x/E: it is read directly from equations (13–14),

remembering that 〈S̄x〉 ∝ E cosωt. This yields χ̄′
x(E =

E∗) � 1
2 χ̄′

x(E � E∗), where the factor 1/2 comes from
the above relation τz = 1

2τz,1, which was a simplification
of the case E = E∗. The comparison of equations (13–14)
is thus only semi-quantitative, but it yields the main
two features of the quantum saturation phenomenon: first
χ̄′(E∗) < χ̄′(E � E∗), second this effect comes from
the off-diagonal part of the susceptibility, i.e., it is purely
quantum (the diagonal susceptibility χ̄′

z ∝ S̄1
z/E is much

smaller than χ̄′
x due to the fact that ωτ1 
 1 below Trev).

We have here an example of quantum decoherence [35].
It is not surprising that these effects were missed by
the adiabatic approximation mentioned in the introduc-
tion since, in this approach, τ2 has disappeared, yield-
ing for the nonlinear onset [9] no other possibility than
|p0 · E| ∼ kBT . Moreover we have shown that the quan-
tum saturation depends on the precise coupling of the
three Bloch equations, i.e. of the fact that τz evolves faster
with E than τz,1: this is out of reach for the adiabatic ap-
proximation since it contains only one differential equa-
tion [11] instead of equations (3a–3c). Finally, the results
of Figures 1–2 do not depend on the precise microscopic
mechanism involved in τ2, but only on the fact, well es-
tablished by echo experiments, that, for a vast subclass
of TLS’s one has τ2 � τ1: this is the main reason of the
E-induced depression of χ′ of Figures 1–2.

1.2.3 Effect of the density of states

Since a few modifications of the usual P̄ /∆0 were proposed
(e.g. in Ref. [32]), we present here an analytical argument

in order to estimate to what extent the results of Fig-
ures 1–2 are sensible to the exact form of the density of
states.

More can be learned from equations (11), and more
precisely from equation (11b) which holds for the vast
majority of the TLS’s responsible for the nonlinear be-
havior. First, let us note that the onset field E∗ increases
as
√

κ2/κ1: this suggests that the depression of χ′, when
E is increased, depends on E

√
κ1/κ2, which, remember-

ing that κ1/κ2 is the square of a temperature, leads to the
dimensionless scale p0E/(kBT )

√
κ1/(T 2κ2) as the natu-

ral parameter for the quantum saturation phenomenon.
This dimensionless scale matches exactly the definition of
η in equation (9).

Second, from the above discussion of equations
(13–14), the TLS’s such that ε ≤ εonset are already in
the saturation regime, while the gaps larger than εonset

are hardly altered by E. It is thus natural to consider
the number of TLS’s such that ε ≤ εonset as an estimate
of the amplitude of the quantum saturation phenomenon
1 − χ′(E, T )/χ′(0, T ), stating:

1 − χ′(E, T )/χ′(0, T ) ∝
∫ εonset

εmin

P (ε)dε ∝
√

E ∝ √
η,

(15)

where the last equality was obtained by using the above-
stated relationship E ∝ η; while the second equality uses
both equation (11c) and the fact that the energetic den-
sity of states P (ε) is a constant due to the standard dis-
tribution P (∆, ∆0) = P̄ /∆0. Equation (15) yields exactly
equation (9) derived from the numerical simulations. This
argument enables to state that the small corrections to
the standard P̄ /∆0 previously proposed only yield small
changes to the behavior of Figures 1–2: this is true, e.g.,
for P̄ /∆1+y

0 with |y| � 1 proposed in reference [32] as well
as for the slight depression of the density of states at small
gaps derived by Burin [33] (see Ref. [34]).

To summarize this Section 1, solving the Bloch equa-
tions leads to the quantum saturation effect, i.e., to a
strong decrease of the off-diagonal part of χ′ when E is
raised. This effect holds for a very large set of κ1 and κ2

– the main parameters of the model, and it mainly comes
from the TLS’s such that ε ≤ εonset < e1,2. For an en-
semble of TLS’s with a P̄ /∆0 density of states, quantum
saturation goes as E0.5, and such an exponent justifies a
posteriori the nonperturbative character of the method
used here. Last, the quantum saturation phenomenon on-
sets for fields E∗ � kBT/p0, as seen from equation (9).
It is thus non-negligible since the field is, in most ex-
periments, decreased well below kBT/p0. However, in the
literature, the trend of the data is systematically the op-
posite of the one of Figures 1–2. Since – see Appendix B –
more general Bloch equations, corresponding to larger E,
should not qualitatively change the results of Figures 1–2,
we conclude that the standard TLS model cannot account
for the basic features of the nonlinear experimental data
in the kHz range.
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2 Adding interactions

2.1 Burin et al.’s mechanism

At this step, at least one drive-dependent parameter must
be added into the model to explain the large discrepancy
with the experimental data. Moreover, it must enhance the
relaxation process at low temperature, since coherence is
broken by the external field as shown in Figures 1–2.

Recently, Burin et al. [8] proposed an additional field-
induced relaxation mechanism. They show that the reso-
nant dipole-dipole coupling, which is so small in glasses,
can be strongly increased by a low-frequency electric field.
Indeed, thermal excitations, which are at zero-field lo-
calized on each TLS, tend to delocalize by hopping to
resonant nearest neighbors. This is due to the fact that
resonant hopping demands both TLS’s to have very close
values of both ∆ and ∆0: as the electrical field modulates
the TLS parameter ∆, the probability of finding, for a
given TLS, a resonant TLS, increases from a negligible
value at very low E, to a non-negligible value above a
threshold of the external field. Let us note that: i) this
mechanism transports energy, which means that it can
be treated as a new relaxation mode; ii) it requires that
quantum coherence is preserved (see below).

The frequency must be small for the electric field to
have time to modulate the coupling parameters. This is of
no consequence here, since our crucial assumption ωτ2 �
1, leading to equation (5), already restricts our work to
the low frequency case. Another assumption is that the
external field amplitude is smaller than the characteristic
splitting energy ∼ kBT , in order to treat the field as a
weak perturbation. The typical values of the frequency
and |p0 ·E| are respectively 100 Hz and 1 mK but may
be softened as a rigorous determination is out of reach.

When the electric field increases, so does the prob-
ability of finding a resonant neighbor close enough to
yield tunneling with not too small a probability: the one-
particle excitation will relax more rapidly at high E to-
wards another site. One can show the relaxation rate is
proportional to the square root of the drive level [8]. To
include this new energy relaxation channel, we set in equa-
tions (3a–3c) τ−1

1 = τ−1
1,ph. +τ−1

1B where τ1,ph is the phonon
field induced relaxation mechanism used throughout Sec-
tion 1 and where

τ1B =
B√|p0 · E| , (16)

with the constant B = 10−5 sK1/2 for physically reason-
able parameters [8]. As a result, increasing E at any given
T leads to an increase of the susceptibility χ′: this shows
that Burin et al.’s mechanism is strong enough to over-
come the decrease due to the “quantum saturation phe-
nomenon”. This is not surprising since, with the standard
values κ1 = 10−8 sK3 and B = 10−5 sK1/2, in the partic-
ular case of symmetric TLS’s (where ε = ∆0), it is found,
e.g. for p0E = 1 mK, ε = 10 mK and T � Trev � 50 mK,
that τ1B � 0.2 ms � τ1,ph. � 10 ms, i.e. Burin et al.’s

mechanism increases noticeably the efficiency of relax-
ation. However, this effect is too strong, i.e. the agreement
between the set of calculated curves (unreported) and the
data is very poor since the net increase of χ′(T ) when E
is increased is stronger at high T than at low T . This is
due to the very numerous TLS’s where ∆0 � ε: in Sec-
tion 1, such TLS’s did not contribute to the relaxation
response since their τ1,ph. was extremely large. Due to
equation (16) they now contribute to relaxation response
(which dominates the total response since one still has
τ2 � τ1 i.e. the quantum saturation still occurs). This
significantly increase the number of TLS’s ε ≤ kBT con-
tributing to relaxation: this number enlarges with T and
so does their supplementary relaxational response due to
the new relaxation channel τ1B .

To interpolate between Figure 1 and equation (16)
which appear as extreme cases, one might state that τ1B

should disappear at high T , both because, very generally,
interaction effects disappear at high T , and because quan-
tum coherence is needed to derive τ1B [8]. This demands
that the chosen τ1B(T ) becomes infinite (i.e. negligible)
at high T , e.g. above 100 mK – see reference [21]. It is
not obvious to develop this idea, as it is seen from Burin
et al.’s works: in the earliest papers, e.g. reference [37], the
T effect upon delocalisation of excitations is studied, but
the field effect is not; while in the paper [8] deriving equa-
tion (16), the T effect is not taken into account. As the
main result of our paper (see the introduction of Sect. 2)
is that a new E-dependent relaxation mechanism is needed
to account for nonlinear data, we start from equation (16)
and modify it heuristically so as to meet the somewhat
intuitive requirement that τ1B increases with T . All the
laws we tried gave the same kind of χ′ behavior. This is
why we report on the calculations made with a simple law,
namely:

τ1B (T ) =
τ1B

1 − e−TB/T
with TB = 15 mK, (17)

where τ1B is given by equation (16) and the thermally
activated behavior models a dipole-dipole coupling con-
stant of TB = 15 mK: the energy scale TB can be deduced
from Figure 3 of Rogge et al.’s data [9] on a-SiOx since
χ′ becomes T -independent below 15 mK even for E val-
ues ten times larger than the range of the linear regime.
Of course, this TB scale can be adjusted empirically since
the T where χ′ becomes T -independent depends on the
material. As the coupling constant goes as g/ |r − r′|3 and
as [5], for a-SiO2, g ∼ 10 Knm3, we get a mean distance λB

between interacting dipoles of nearly 10 nm.

2.2 Effects of the new relaxation mechanism

2.2.1 Numerical results

The modified-model predictions using equation (17) are
displayed in Figure 3. The values of |p0 · E| have been
limited to 10 mK because of the restrictions on both the
Bloch equations and the field-induced mechanism. A trend
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Fig. 3. Main figure: Simulation of a-SiO2 susceptibility at
1 kHz vs. temperature with equation (8) and the same parame-
ters as in the main part of Figure 1. The calculations were done
within a modified TLS model where excitations are no longer
localized but can experience field-induced hops to neighboring
sites, which is modeled by an additive relaxation channel (see
the definition of τ1B(T ) in Eq. (17)). The data show a linear
behavior at low enough drive levels (the p0E values label the
curves), an evolution of Trev with E compatible with experi-
ments and a substantial decrease of the T dependence of χ′ at
low T (instead of the ultra-low T plateau seen in experiments
for T ≤ Tplat); Inset: For p0E � kBT , in the (∆, ∆0) plane,
〈S̄1

z 〉 is not negligible only within the ε < 2T domain. Even for
p0E = 0.8 mK, the hatched area where τz < τz,1 has a non
negligible size with respect to this ε < 2T domain: this yields a
supplementary T -dependent contribution to the diagonal sus-
ceptibility χ′

z which overcomes the E-induced depression of χ′
x

seen in Figure 1, and yields the E-enhanced χ′ trend seen on
the main part of the figure.

completely different from the one of Figure 1 is obtained
at low temperature since an increase of the response is
observed when the drive level increases.

By computing separately (unreported) in equation (8)
the two terms of the right hand side of equation (7), we
checked that χ′

x behaves qualitatively as in Section 1 and
that the new trend of Figure 3 is due to the diagonal
part χ′

z. We now briefly explain this new behavior.

2.2.2 Behavior above Trev

One first note that τ1B(T ) is now the upper bound of τ1,
even for the numerous TLS’s whose small ∆0 value lead,
in Section 1, to a very large τ1. With ωτ1B(T � TB) � 1,
the 1/(ω2τ2

1 ) cutoff of S̄z seen on equation (12) has now
disappeared, i.e. the dS̄z/dt term in equation (6) can be
dropped, yielding:

S̄z(t) � τz

τz,1

〈
S̄z(t)

〉
, (18)

where τz, τz,1 are defined in equation (10). At E → 0, one
has τz � τz,1 � τ1, yielding with equation (18), S̄z(t) �〈
S̄z(t)

〉
. With the additional remark that

〈
S̄1

z (ε < 2T )
〉 �

�p0E/(4kBT ) while
〈
S̄1

z (ε > 2T )
〉 � 0, one gets, with the

standard P̄ /∆0 density of states, that χ′
z(T ) ∝ + ln T :

this is the trend seen above Trev.

2.2.3 Behavior below Trev

To explain the behavior below Trev, the key point is that
for quite a large domain in the (∆, ∆0) one has τz/τz,1 <
1: since this factor is T dependent, it will modify the T
dependence just above derived for χ′

z from equation (18).
It is shown in reference [38] that the condition τz/τz,1 < 1
amounts to:

ε ≤ 2p0E
(√

τ1B(T )/τ2 sinφ + cosφ
)

with φ = arctan
∆0

∆
· (19)

This τz/τz,1 < 1 condition is shown, as a hatched domain,
in the inset of Figure 3. Even for the lowest E studied here,
it is not negligible with respect to the ε < 2T area. Since in
the hatched domain one has τz/τz,1 � τ2Ω2

z/(τ1Ω2
x), this

factor remains T dependent even below TB when τ1B(T )
has reached its maximum value: this is due to the fact that
τ2 remains T dependent even at very low T .

With
〈
S̄1

z (ε < 2T )
〉 � �p0E/(4kBT ), integration of

equation (18) within the hatched area yields a contribu-
tion δχ′

z ∝ E3/4/T 1/2. Thus: i) this term increases as T
decreases; ii) δχ′

z increases with E, i.e. it can overcome the
E-induced depression of χ′

x. Disregarding the slight differ-
ence – see [39] – between the δχ′

x ∝ −E1/2 seen for the
quantum saturation phenomenon and the δχ′

z ∝ +E3/4,
the linear regime of Figure 3, up to p0E = 0.32 mK can be
seen as resulting from the compensation of both effects. At
higher E, the δχ′

z increase dominates over the E-induced
depression of χ′

x, yielding a net increase of χ′ with E. Note
that χ′

z(E) becomes T independent when T ≤ p0E/kB: in
this case, indeed,

〈
S̄1

z (ε < 2T )
〉

is no longer T dependent.
This yields the substantial decrease of the T dependence
of χ′ seen for the two highest E values in Figure 3.

Last, the off-diagonal susceptibility χ′
x ∝ S̄1

x mainly
behaves as in Section 1, i.e. we recover the quantum sat-
uration phenomenon yielding, when E is raised, both a
decrease of χ′

x and of the slope |∂χ′
x/∂T |. With respect to

Section 1 the quantum saturation effect is somehow weak-
ened, which can be understood since, for a given E, the
number of TLS’s lying within the ε ≤ εonset domain of
Figure 1 is larger than the corresponding one in Figure 3.
Finally, the variations of χ′

x with T remain smaller than
the ones of χ′

z , excepted in the case where T < p0E/kB:
the small T dependence of χ′(T < TB; p0E � 5 mK) is
thus the only case where χ′

x dominates the T behavior of
χ′ in Figure 3.

To summarize, the bigger the electric field, the smaller
the field-induced relaxation time (see Eqs. (16–17)), which
enhances the relaxational part of the response, leading to
a net increase of χ′ with E at a given T . At a given E,
when T decreases below TB, the χ′(T ) increase is due to
the fact that τ2 is still T dependent: this is, of course,
out of reach for the adiabatic approximation where τ2 has
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disappeared. Finally, inserting Burin et al.’s new relax-
ation rate in Bloch equations allow to account qualita-
tively for the main trend of the nonlinear data (at least
for T ≥ Tplat): however, in this approach, the so-called
“resonant” regime below Trev is not an “off-diagonal one”
but, mainly, a field-enhanced relaxation regime.

2.3 Comparison with experiments

In Figure 3, one observes a pseudolinear regime up to
p0E � 0.05kBT where the dielectric response is quasi-
independent on the external field. This value of the electri-
cal field agrees with the experimental linear regime, which,
depending on the materials, extends up to p0E/(kBT )
in the range [0.02; 0.12] (see Figs. 3–5 of Ref. [9]). We
checked that this pseudolinear regime comes from the form
of τ1,B ∝ E−β where β takes the highly nontrivial value
1/2. Setting lower values for β, such as β = 0.1, yields the
quantum saturation phenomenon to dominate, leading to
the same trends as in Figure 1, at odds with experiments.
Setting β = 1 leads to the tendency of Figure 3 but with
a linear regime reduced to p0E/(kBT ) < 0.01. The second
key point is the trend of the reversion temperature Trev

with E: using equation (17), i.e., β = 1/2, leads Trev to
increase by a factor three when E = 30 × Erev, where
Erev is the electrical field such that the nonlinearities on-
set at Trev. This is in good agreement with Figure 3 of
reference [9]. On the contrary, using β = 1 leads Trev

to increase much faster with E: Trev(E = 30 × Erev) =
30×Trev(E = 0). Finally, the key role of β = 1/2 is some-
how reminiscent of equation (9) where δχ′ ∝ √

E, even if
an analytical argument supporting this idea is still lacking.

With respect to experimental data, a failure, at this
step of the discussion, is the ratio between the two slopes
∂ε′r/∂ ln T below and above the reversion temperature. In
Figure 3 this ratio is near −1.7 : 1 instead of −1 : 1 in
most experiments. Furthermore, the low-temperature lin-
ear -susceptibility data tend to a T -independent plateau
while they do not in our simulations. At very low temper-
ature, interactions are likely to be so strong that the inde-
pendent TLS model does not apply anymore, even with a
renormalized relaxation time such as that of equation (17).
A transition toward a dipole-glass was invoked to explain
the behavior of the samples whose χ′ no longer depends
on T below a few mK. In this picture, dipole orientation is
progressively frozen, which would lead to a plateau of the
susceptibility [6,43]: by continuity, this would weaken the
slope ratio near −1 : 1. Since the TLS model should not
apply at very low T , it is not surprising that the plateau of
the susceptibility measured in the nonlinear regime is not
well accounted for by Figure 3. Indeed, Figure 3 does not
show a completely T -independent plateau but only a sub-
stantial reduction of the T -dependence of χ′ at low T : as
stated in Section 2.2, this is due to χ′

x which still exhibits
a small T dependence, even when χ′

z has turned into its
T independent regime. However, if, in Figure 3, the sus-
ceptibility is frozen below a given T , one gets plateaus
for χ′ whose heights depend on E, as in experiments. Fi-
nally, pushing β toward 1 strengthens the tendency of χ′

to become T independent at low T (unreported), even if
β � 1 leads to the above-mentioned discrepancies with
respect to experimental data. Let us note that some ma-
terials (see Rogge et al. [9]) do not yield any sign of such
a glass transition even at T = 0.6 mK.

2.4 New predictions

Let us move briefly to the physical predictions implied
by Burin et al.’s mechanism. Remembering that the in-
equality ωτ2 � 1 allowed the key simplification for the
derivation of χ′(E, T ) – see equation (5) – we restrict our-
selves to the kHz range where this condition is fulfilled.
The following predictions can be done.

2.4.1 Thickness effect

τ1B(T ) will be suppressed in samples whose thickness h is
smaller than the distance λB separating the quasi-similar
TLS’s required by Burin et al.’s mechanism. Indeed, at
distances larger than h, dipolar interactions within the
dielectric will be suppressed by the screening effect of the
numerous electrons of the electrodes. Thus, if h � λB ,
one should observe a non linear behavior such as the one
calculated in Section 1 – see Figure 1, where the quan-
tum saturation of the levels only remains. In other words,
ranging h from a fraction of λB to a few λB in a series of
samples and studying χ′(E, T ) should lead to a gradual
transition from Figure 1 to Figure 3 if Burin et al.’s mech-
anism is relevant, while it should not affect the non linear
behavior in the standard TLS model. Note that such an
experiment looks feasible due to the quite large value of
λB � 10 nm, – see Section 2.1. This is due to the fact
that Burin et al.’s mechanism requires the two interact-
ing TLS’s to have both very close values of ∆ and very
close values of ∆0: these conditions are stringent enough
to make λB much larger than the distance between a given
TLS and its nearest neighbor.

2.4.2 Nonlinear effects in nonequilibrium phenomena

The net relaxation frequency τ−1
1 + τ−1

1B of a given TLS
increases as E increases. Thus, nonequilibrium data should
be of smaller amplitude when E is raised. Indeed, they are
currently interpreted as resulting from the very large τ1

existing in any glass due to the subclass of TLS’s whose
energy barrier is so high that ∆0 is very small. These very
“slow” TLS’s have an extremely delayed response to any
change of the external constraints, such as the d.c. elec-
trical, or strain, field imposed to the sample: these TLS’s
yield an excess of states at low energy with respect to
the equilibrium density of states, the latter having a small
depression at low energies due to TLS-TLS interactions.
To our knowledge, the influence of E on nonequilibrium
phenomena has been reported only once, in Rogge et al.’s
work devoted to nonequilibrium phenomena on a mylar
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sample [45]. Applying a relative strain field F to the sam-
ple leads to a sudden jump of the dielectric capacity C,
measured at 5 kHz, followed by a logarithmic relaxation.
At T = 11 mK, i.e., well below Trev, and with F =
2.7× 10−6, the initial relative jump is dC/C = 13× 10−7

if the measuring field is E = 5 × 104 V/m (see Fig. 1
of Ref. [45]), while it decreases to dC/C = 4.5 × 10−7 if
the measuring field is E = 8.5 × 104 V/m (see Fig. 2 of
Ref. [45]). Let us note that, with p0 = 1 D and a rela-
tive dielectric constant of 5, E = 5 × 104 V/m amounts
to an energy of 10 mK, of the order of T : in terms of
our Figure 3 this means that one stands just above the
pseudolinear regime, i.e., in a regime where our calcula-
tions, as well as Burin’s mechanism, should apply. Even if
this was not investigated systematically, this single exper-
imental datum favors the idea that nonequilibrium effects
should be of smaller amplitude when E is increased, due
to the interaction-induced reduction of the diagonal relax-
ation time.

3 Conclusions

In conclusion, we have simulated the nonlinear dielectric
susceptibility of amorphous materials by using the TLS
model. Phase coherence effects have been taken into ac-
count, which is the main difference with the adiabatic ap-
proximation. In the kHz range, the standard TLS model
yields a nonlinear behavior at odds with experiments due
to the field induced depression of the quantum response.
However, it was possible to recover a better, though
still not perfect, agreement with the experimental low-
temperature field-induced rising response by adding a new
relaxation mechanism based upon the existence of inter-
actions below 100 mK. In this approach, the low tempera-
ture response mainly loses its “off diagonal” origin at low
frequency. Our work stresses the necessity to inject inter-
actions into the TLS model to get satisfactory predictions.
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Appendix A: Phase decoherence induced
by small TLS interactions

In this appendix, we aim at giving some physical insight
into the relaxation term introduced in the dynamics of an
ensemble of TLS’s due to their small mutual interactions.
Expanding on the assumption that these interactions are
much smaller than the other relevant energy scales (such
as T or the gap ε), the basic idea [16] is to model these in-
teractions by a small random electric field acting on each

TLS. This idea is not new [16,23], and numerical results
are presented here only to help understand the concept
used in equations (3a–3b), i.e. the fact that the small
TLS-TLS interaction act as a “spin bath” which forces
the quantities S̄x and S̄y to zero.

A.1 Interactions effects when the measuring field
E = 0

Consider first the case where the measuring field E = 0.
Modeling mutual interactions between TLS’s by a random
electric field leads, for a given TLS, to a total Hamiltonian
given, by:

H =
1
2

(
ε 0

0 −ε

)
+

(
∆
ε

∆0
ε

∆0
ε −∆

ε

)
p0 · Erand, (A.1)

where the electric field Erand is random in time for the
considered TLS, and, at a given instant t, varies randomly
for various TLS’s. Note that equation (A.1) is expressed in
the eigen basis of the TLS. On the contrary, in the “time
dependent diagonal method” considered by the adiabatic
approximation [11], the TLS-TLS small interactions can
be totally absorbed by setting ∆(t) = ∆ + p0Erand(t).
Since p0Erand(t) � ∆, no physical effect is expected to
arise from Erand(t), i.e. Erand totally disappears in the
adiabatic approximation, as well as the associated time
scale τ2. In this work, as it was many times stated above,
we do not neglect τ2, contrarily to reference [11].

Defining the density operator ρ(t) by:

ρ(t) =

(
1
2 + z x + iy

x − iy 1
2 − z

)
, (A.2)

it is clear that x, y, z are, respectively, the quantum mean
values of the three spin operators (S̄x, S̄y, S̄z are the cor-
responding symbols once the ensemble average over many
similar TLS’s is made). By using i�ρ̇ = Hρ − ρH , where
the dot stands for time derivation, the dynamics of x, y, z
follows: 



ż = −Ω1y, �Ω1 = −2
∆0

ε
p0Erand (A.3a)

ẋ = −Ω0y, �Ω0 = ε + 2
∆

ε
p0Erand (A.3b)

ẏ = Ω0x + Ω1z. (A.3c)

To characterize the random fluctuations in time
of Erand we model its autocorrelation function by <

Erand(t)Erand(t+t′) >t= u2

p2
0τc

[θ(t′+τc)−θ(t′−τc)] where
θ(t) stands for the Heaviside step function, τc is the char-
acteristic time scale of the fluctuations and u/

√
τc the

typical scale of the fluctuating part of the Hamiltonian
H . This means that Erand(t) is drawn at random once
every τc and can be considered constant over time inter-
vals [nτc, (n + 1)τc], where n is an integer. Within each of
these intervals, Erand(t) takes the constant value En. This
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Fig. 4. Dynamics of a TLS (∆ = 1 K, ∆0 = 0.01 K) submitted
to a random electric field (u/

√
τc = 0.1 K, τc is the quarter of

the Bohr period h/
�

∆2 + ∆2
0). z, the quantum mean value

of Sz, is basically constant (solid line with square symbols),
i.e., mostly unchanged by the random electric field. On the
contrary, y, the mean quantum value of Sy, is strongly affected
by random electric field: the periodic Bohr oscillations (short
dashed line) seen in the absence of random electric field, are
progressively distorted when random electric field is present.
Inset: As a result, Cy, the normalized autocorrelation function
of y(t), decreases exponentially with time.

allows to solve exactly the equation for ÿ obtained from
equations (A.3): ÿ + (Ω2

0,n + Ω2
1,n)y = 0. This yields:

y(nτc + t) = y(nτc) cosΩnt +
ẏ(nτc)

Ωn
sin Ωnt, (A.4)

where Ωn =
√

Ω2
0,n + Ω2

1,n with Ω0,n and Ω1,n defined
as in equations (A.3) by setting Erand(nτc + t) = En.
Inserting equation (A.4) into equation (A.3a) and equa-
tion (A.3b), with the notation Xn = X(nτc) for any quan-
tity X , we get:




xn+1 = xn − Ω0,nyn

Ωn
sn − Ω0,nẏn

Ω2
n

(1 − cn) (A.5)

zn+1 = zn − Ω1,nyn

Ωn
sn − Ω1,nẏn

Ω2
n

(1 − cn) (A.6)

ẏn+1 = Ω0,n+1xn+1 + Ω1,n+1zn+1, (A.7)

where sn = sin Ωnτc, cn = cosΩnτc. The four equa-
tions (A.4–A.7) allow to deduce x, y, z at step (n+1) pro-
vided the corresponding quantities are known at step n.
Choosing the initial conditions x1, y1, z1, yields ẏ1 =
Ω0x1 + Ω1z1 which allows to initiate the recurrence. Fi-
nally, let us note that choosing the initial quantum state
as |Φ1〉 = a1|+〉 +

√
1 − |a1|2 exp(iϕ1)|−〉, where |+〉, |−〉

are the eigen states of the TLS, amounts to setting:
x1 = |a1|

√
1 − |a1|2 cosϕ1, y1 = |a1|

√
1 − |a1|2 sinϕ1,

z1 = |a1|2 − 1/2.
Figure 4 shows the dynamics of a TLS defined by

∆ = 1 K, ∆0 = 0.01 K evolving from the initial state a1 =
1/2; ϕ1 = π/2, i.e., from x1 = 0; y1 =

√
3/4; z1 = −1/4.

The random field characteristics were set to u/
√

τc =
0.1 K and τc = h/(4ε), i.e., τc was chosen four times lower

than the Bohr period. Without ‘noise’, y(t) exhibits the
well-known regular Bohr oscillations (short-dashed line
in Fig. 4). The effect of ‘noise’ is to deform these os-
cillations (continuous line in Fig. 4) by an amount in-
creasing with time: as a result the periodicity of y(t)
gradually disappears. This is illustrated in the inset of
Figure 4 showing the exponential decrease in time of the
absolute value |Cy| of the autocorrelation of y, defined by
Cy(t) = 〈δy(t′)δy(t′ + t)〉t′/λ2 with δy(t) = y(t) − 〈y〉 and
λ2 = 〈(δy)2〉.

Since the value yn depends on the set of values En

drawn for the considered TLS from n = 1, ensemble av-
eraging (over many TLS’s with the same ∆, ∆0) will lead
to a cancellation of y due to the absence of correlations
between the noise series seen by different TLS’s. This can-
cellation happens on a time scale τ2 which should be of
the order of the one of Cy shown in the inset of Figure 4.
This cancellation of y after ensemble averaging amounts
to a supplementary relaxation term S̄y/τ2 in the Bloch
equation describing S̄y dynamics.

The dynamics of x(t) (unreported in Fig. 4) is similar
to the one of y, yielding a corresponding relaxation term
S̄x/τ2. This contrasts totally with the dynamics of z(t),
depicted in Figure 4: provided the amount of noise δH(t)
is much smaller than the gap ε, z(t) stands very close to
its initial value z1, even at large times. In fact small fluc-
tuations exist, with an autocorrelation decrease similar to
the one of Cy, but the key point is that |z(t)/〈z〉− 1| � 1.
Hence the ‘noise’ does not yield any supplementary relax-
ation term in the Bloch equation governing the population
dynamics S̄z.

A.2 Interaction effects with a finite measuring field E

When the measuring E is no longer zero, the whole dy-
namics should be recalculated, with the supplementary
dipolar Hamiltonian corresponding to E. However, the
fact that the measuring frequency ω is much lower than
1/τ2 greatly simplifies the problem. Indeed, if ω were zero,
taking into account of E would strictly amount to replace
∆ by ∆ + p0 · E: with this new definition of ∆, all the
previous calculations apply, yielding the same relaxation
terms in the Bloch equations. We will assume that this
holds true for finite ω, due to the fact that for the kHz
frequencies considered here, the experimental values of τ2

ensure ωτ2 � 1, even at the lowest T studied in the body
of the paper.

Appendix B: Validity of Bloch equations

The three Bloch equations equations (3a–3c) are valid in
the quasilinear response [36]. When the electric field be-
comes strong enough, the relaxation terms form a nondi-
agonal matrix, e.g. a S̄z/τx,z term might come into play
in the first Bloch equation, and the corresponding Bloch
equations are usually named in the literature Generalised
Bloch Equations (GBE). However, up to our knowledge,
these generalized relaxation terms have been calculated
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only in the case of transverse fields in the rotating wave
approximation [40]. This is at odds with our physical sit-
uation: i) The transverse field case amounts to ∆ = 0,
which, by far, is not the case considered here (remember
that, due to the 1/∆0 density of states, for most TLS’s
one has ∆ ≥ ∆0); ii) The measuring field E ∼ cosωt is
an oscillating one, not a rotating one ∼ exp iωt and the
rotating wave approximation would be valid only close to
the resonance ω � ε/�, a condition totally irrealistic here
due to the extreme smallness of �ω = 2 × 10−7 K.

However, even if they do not apply in our case, one
can use the GBE derived in the rotating wave approxima-
tion for transverse fields to guess qualitatively what could
be the influence of the off-diagonal relaxation terms. Two
points are worth mentioning:

i) One can easily check that the GBE still yield quali-
tatively the quantum saturation phenomenon, even if the
off-diagonal relaxation terms are responsible for quantita-
tive modifications. In particular, it was shown, in the limit
of infinite E, that the GBE reduce to the standard Bloch
equations with τ2 = 2τ1 and that one gets a vanishing
susceptibility.

ii) In the GBE, the off-diagonal relaxation times be-
come infinite (i.e. negligible) when τc → 0, where τc is the
correlation time of the random field created, on a given
TLS, by its neighbors. In the same spirit [41], in the GBE,
τ2 is affected by a multiplicative factor

(
1 + Ξ2τ2

c

)
where

Ξ = |p0 ·E| /� is the Rabi frequency. The order of mag-
nitude of τc in glasses was measured only once by Devaud
and Prieur [42] who found τc � 10−8 s at T = 70 mK
with an expected τc ∼ 1/T temperature dependence. The
E dependence in the relaxation times can be neglected if
Ξτc ≤ 1. Aware of these limits, we guess the standard
Bloch equations can give a fair approximation as long as
|p0 · E| does not exceed 0.1−1 mK at low temperature.
As an additional remark, the validity domain of our cal-
culations extends as τc decreases.

To summarize, the GBE do not suppress the quan-
tum saturation phenomenon, on the contrary, they are
intended to quantitatively account for the various mea-
surable quantities in the saturation regime (such as
linewidths, etc.). The problem of the strong depression
of χ′ when p0E is increased from extremely small values
up to 10−4 − 10−3 K is thus unavoidable and is at odds
with Rogge et al.’s experiments [9] which were carried out
on various glasses and showed absolutely no sign of field
induced depression of χ′(T < Trev), despite the fact that
p0E was varied from 0.05 mK to 50 mK: the fact that the
domain p0E ≤ 1 mK was experimentally investigated is of
special importance since, as stated above, in this domain,
at least, the Bloch equations used here should be valid.
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